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SUMMARY

The aim of this work is to model the transient dynamic interaction between multicomponent compressible ¯uid
¯ows and general elastoplastic structures, possibly undergoing large motions and deformations. The ¯uid domain
is treated by a node-centred ®nite volume method, using an approximate Riemann solver to compute the
numerical ¯ux. The use of an arbitrary Lagrangian±Eulerian kinematical description and a non-structured ¯uid
grid is essential for the adopted coupling strategy with the structural domain, which is modelled by ®nite
elements and uses a Lagrangian description. # 1997 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 25: 1263±1284 (1997)

No. of Figures: 13. No. of Tables: 1. No. of References: 24.

KEY WORDS: compressible ¯uids; transient dynamics; ¯uid±structure interaction; arbitrary Lagrangian±Eulerian

1. INTRODUCTION

In the numerical simulation of fast transient dynamic phenomena involving ¯uid±structure

interactions (FSIs), the equilibrium equations for the structural domain are usually formulated in a

reference frame which moves simultaneously with the structure (Lagrangian description) and

discretized via ®nite elements (FEs). On the other hand, the analysis of computational ¯uid dynamics

(CFD) problems is normally formulated in a purely Eulerian manner, in which the discretization

points are ®xed in the reference frame and ®nite volumes (FVs) are used for the spatial discretization.

The study of ¯uid±structure interactions thus requires the overall description to be formulated in such

a manner as to accommodate these two extreme situations.

The ¯uid domain is considered to be an arbitrary (multicomponent) mixture of inert Joule gases,

for which the internal energy is a monotonically increasing function of temperature, and not

undergoing any chemical process. However, the possibility of extending the present model to account

for reactive ¯ows is taken into account in the selection of the numerical scheme.

The aim of this work is twofold. The ®rst task is to extend some now well-established numerical

strategies for the treatment of the CFD problems under consideration from a Eulerian context towards
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a more general, arbitrarily moving, non-structured ®nite element grid by means of an arbitrary

Lagrangian±Eulerian (ALE) formulation. The selected numerical scheme is the node-centred ®nite

volume method,1,2 using an approximate Riemann solver to compute the numerical ¯ux and

combined with a MUSCL-like technique to obtain second-order accuracy. The extension of the FV-

ALE formulation3,4 to non-structured grids proposed by Nkonga and Guillard5 has been considered

here, taking into account also quadrangular elements.

The second task is to effectively couple the proposed (FV-based) model for multicomponent ¯ow

with general, FE-based models of the structural components, possibly undergoing large

displacements, rotations and deformations. These FE models were already available in PLEXIS-

3C, a general computer code for transient dynamic analysis of ¯uid±structure systems being jointly

developed, since 1986, by the French Commissariat aÁ l'Energie Atomique (CEN Saclay) and the

European Commission (JRC Ispra); see e.g. Reference 6. The ability to perform coupled FSI analyses

has been proven essential in many real applications, because the behaviour of the ¯uid may be

strongly in¯uenced by the motion and the response of the solid structure. The implementation of the

present multicomponent models in PLEXIS-3C is currently limited to 2D plane analysis,7 but the

extension to other geometric descriptions (axisymmetric, 3D) is under way.

The governing equations for multicomponent compressible inviscid gas ¯ows are given in Section

2. Then in Section 3 the numerical discretizations in time and space of these equations are described.

Section 4 presents the technique used for the coupling of the ¯uid and structural domain descriptions.

Finally, several numerical examples illustrating the performance of the method are given.

2. STATEMENT OF PROBLEM

2.1. Conservation equations

The multicomponent Euler equations are to be solved within the ¯uid domain. Restricting

ourselves in two space dimensions, these equations are expressed in conservative form as

@W=@t � H � F�W � � 0: �1�
The conserved variables W and the components of the ¯ux vector F � �Fx;Fy� are given by
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where rk represents the partial density of component k�k � 1; 2; . . . ;G�; ux and uy are the

components of the velocity vector u, E is the total energy per unit mass and r is the total density

given by
P

k rk .

The total energy E is made up of the internal energy per unit mass, e, and the kinetic energy per

unit mass, kuk2=2, i.e. E � e� kuk2=2. The internal energy per unit volume is given by

re � PG
k�1

rkek : �3�
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Assuming a mixture of Joule gases, each component of the mixture has a temperature state equation

of the form

ek � ek�Tk�; �4�
where Tk is the thermodynamic temperature of species k (related to the average kinetic energy of

particles from the kth species), thus having ek�0� � 0; 8k.

Local thermodynamic equilibrium will be assumed, so the thermal ®eld will be characterized by a

unique temperature for all components, i.e. T � T1 � � � � � TG at each spatial location. Assuming a

polynomial function of degree nk for each constitutive relation, we have

ek �
Pnk

i�1

CkiT
i: �5�

Given a state vector W of conserved variables, equations (3) and (4) allow for the computation (by

means of an iterative algorithm if necessary) of the temperature as a function of rk and ek .

For a mixture of gases with constant heat capacities the temperature is given by

T � e=Cv; �6�
where the heat capacity of the mixture at constant volume, Cv, is calculated according to

Cv �
PG
k�1

Cvk

rk

r
: �7�

Here Cvk stands for the speci®c heat at constant volume for component k.

The equation linking the pressure p with the conserved quantities Wi is provided by the following

pressure state equation, valid for an ideal mixture of Joule gases:

p � p�r1; . . . ; rG; re� � RT
PG
k�1

rk

wk

; �8�

where R is the universal constant of gases and wk the molar mass of component k. Note that equation

(8) is just an expression of Dalton's law of partial pressures. The partial derivatives of pressure with

respect to the conserved variables are

k � @p

@re
� p

�
T
PG
k�1

rk

dek

dT

� �
; �9�

wk �
@p

@rk

� RT

wk

ÿ kek�T �: �10�

In addition to these derivatives, another important physical property is the sound speed, which is

given by

c � @p

@r

� �r
s;mk

� kh� PG
k�1

wk

rk

r

� �s
�

�r
�k� 1� p

r

�
; �11�

where the partial derivative is computed at constant entropy s and number of moles mk of each

component. The hypothesis of a mixture of Joule gases has been made to obtain the right-hand-side

expression, and h denotes the mixture enthalpy per unit mass:

h � e� p=r: �12�
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2.2. Source term and chemistry

The consideration of the enthalpy of formation for each species, Dh0
f ;k , has been omitted in the

expression of the internal energy. It would play a role only in the case where chemical processes were

considered when taking into account a source term in (1). Although the present work does not

consider the presence of source terms, a possible future extension to include this feature has been

taken into account when developing the numerical model. In this case, maintaining the assumption of

the absence of any diffusive phenomena (viscous effects, thermal conduction or molecular diffusion),

the governing equation would be

@W=@t � H � F�W � � S�W �: �13�
The source term is given by

S�W � � _r1; _r2; . . . ; _rG; rgx; rgy; rg � uÿ PG
k�1

Dh0
f ;k _rk

� �T

; �14�

where g � �gx; gy� are the body forces and _rk is the local rate of production of component k, which

has to be computed from the local chemical composition and the chemical characteristics of the

mixture.

2.3. Hyperbolicity of conservation equations

Given an arbitrary direction in space de®ned by two points i and j, let us denote by nij the unit

vector normal to this direction. A projection of the ¯ux vector F onto nij can be made, yielding

Fij�W � � F�W � � nij. The conservation system (1) is known to be hyperbolic, so the Jacobian matrix

associated with Fij�W �,
Aij�W � � @Fij�W �=@W ; �15�

can be diagonalized and has real eigenvalues for all physically compatible states for any direction

projection nij. In addition, it can be shown that Fij�W � �
~
Aij�W �W (Euler identity). A suf®cient

condition for the hyperbolicity of the system is that the pressure equation of state veri®es the Euler

relationship, i.e.

p � @p

@re
re� PG

k�1

@p

@rk

rk � kre� PG
k�1

wkrk ; �16�

as is the case for a mixture of Joule gases.

These properties imply that there exists a set of characteristic variables U � f �W � for which the

conservation equation (1) can be decoupled into a system of G� 3 pure advection equations (linear or

not) whose advection speeds are the eigenvalues of Aij:

@U=@t �
~
LHU � 0; �17�

where

~
L �

~
Tÿ1

~
Aij

~
T � diagfl1; . . . ; l1; l2; l3g; �18�

with l1 � un, l2 � un � c and l3 � un ÿ c; c being the sound speed associated with the state W. The

®rst G� 1 characteristic ®elds are associated with convective waves, whereas the last two are

associated with pressure waves. The (linearized) passage from conserved to characteristic variables is

made by means of a transformation matrix
~
Tÿ1:

U �
~
Tÿ1W : �19�
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The Jacobian matrix is given by

~
Aij�W � �

�dkl ÿ Yk�un Yknij 0

�wl � kkuk2=2�nij ÿ unu un
~
I � unij ÿ kniju knij

un�wl � kkuk2=2ÿ H� Hnij ÿ kunu �k� 1�un

2664
3775; �20�

where dkl is the Kronecker symbol, un � u � n is the velocity projection along the normal, I is the unit

tensor, Yk � rk=r is the mass fraction of component k and H � h� kuk2=2. The notation unij (resp.

niju) denotes the diadic product of vectors, i.e. �unij�kl � uknijl .

Using the same notation, the transformation matrices are expressed as

~
T �W � �

dkl 0 Yk Yk

u cbij u� cnij uÿ cnij

kuk2=2ÿ wl=k c�bij � u� H � cun H ÿ cun

264
375; �21�

~
Tÿ1�W � � 1

c2

c2dkl ÿ Yk�wl � kkuk2=2� Ykku ÿYkk

ÿc�bij � u� cbij 0

1
2
�wl � kkuk2=2ÿ cun� 1

2
�cnij ÿ ku� k=2

1
2
�wl � kkuk2=2� cun� ÿ 1

2
�cnij � ku� k=2

266664
377775; �22�

where bij is the unit vector orthogonal to nij, i.e. bij � �nijx;ÿnijy�.
The reader is referred to Reference 8 for further details as well as for the extension to the non-

equilibrium formulation.

When the sound speed is very large with respect to the ¯ow speed (i.e. low Mach number), an

explicit time integration scheme is unable to correctly track the propagation of all signals. The

pressure waves associated with the eigenvalues l2 and l3 propagate very fast across the domain. The

hyperbolic character of the equations is preserved, but the in¯uence of the pressure waves affects very

rapidly the entire domain. The correct tracking of the convective signals would require an implicit

time integration scheme to overcome the severe time step restriction due to the Courant±Friedrichs±

Lewy (CFL) condition for the fast sonic waves.

However, for the kind of applications under consideration (¯uid±structure interaction and fast

transient phenomena), pressure waves are of major relevance. According to this, an explicit time

integration scheme seems more adequate to treat the equations within the computational domain. The

way in which this time integration scheme is accommodated with the explicit scheme used for the

integration of the equilibrium equations in the solid (Lagrangian) domain will be described below.

3. TIME AND SPACE DISCRETIZATION

3.1. Arbitrary Langrangian±Eulerian formulation

The numerical discretization of the conservation equations has been carried out by means of a non-

structured ®nite volume formulation, fully compatible with standard ®nite element grids. Three-

noded triangles and four-noded quadrangles have been considered. The arbitrary Lagrangian±

Eulerian method presented here is based on the Godunov scheme3,9 as recently reformulated in

unstructured 3D moving domains by Nkonga and Guillard.5

The computational domain will be assumed to be divided into non-overlapping node-centred

control volumes delimited by the medians of triangles and quadrangles as shown in Figure 1. The
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simultaneous use of triangles and quadrangles to construct the node-centred control volumes has been

discussed in Reference 10, where several techniques to treat the quadrangles are presented and

compared.

We will assume that each grid point is moving with respect to the ®xed co-ordinate system with a

velocity ®eld v�x�. The conservation equation (1) can be integrated on the moving control volume Oi,

whose boundary will be denoted by @Oi. The total rate of change of the conserved quantity within the

moving control volume is given by Reynolds' transport theorem:

d

dt

�
Oi�t�

W dOi �
�
Oi�t�

@W

@t
� H � �Wv�

� �
dOi �

�
Oi�t�

@W

@t
dOi �

�
@Oi�t�
�W �v � n�� dUi; �23�

where dUi is an element of the control volume boundary @Oi�t�.
Note that Green's theorem has been applied to obtain the last equation, where n � n�t� is the

normal unit vector to the boundary @Oi�t� (outwardly oriented).

Integration between t � tn and t � tn � Dt yields�
Oi�tn�Dt�

W dOi ÿ
�
Oi�t�

W dOi �
�tn�Dt

tn

�
Oi�t�

@W

@t
dOi dt �

�tn�Dt

tn

�
@Oi�t�
�W �v � n�� dUi dt: �24�

Let us denote by W n
i the set of discrete variables approximating the solution of the continuous

problem. The quantity W n
i is then de®ned as the averaged value of the conserved variable W within

the control volume Oi at time t � tn:

W n
i �

�
Oi�t�

W dOi

 !�
jOijn; �25�

where jOijn represents the measure (area in two space dimensions) of the control volume Oi at time

t � tn. Using equation (1), we have

jOijn�1W n�1
i ÿ jOijnW n

i �
�tn

tn

�
@Oi�t�
�W �v � n�� dUi dt ÿ

�tn�Dt

tn

�
Oi�t�
�H � F�W �� dOi dt: �26�

Application of Green's theorem yields

jOijn�1W n�1
i ÿ kOijnW n

i �
�tn�Dt

tn

�
@Oi�t�
�W �v � n�� dUi dt ÿ

�tn�Dt

tn

�
@Oi�t�
�F�W � � n� dUi dt: �27�

Figure 1. Node-centred control volumes Oi and Oj
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The time-averaged normal (outwardly oriented) vector corresponding to the portion of the

boundary @Oi�t� between Oi and Oj will be denoted as

Nij �
1

Dt

�tn�Dt

tn

�
@Oi�t�\@Oj�t�

n�t� dUi dt; �28�

whereas the time-averaged normal velocity of the control volume boundary will be represented as

vNij �
1

DtkNijk
�tn�Dt

tn

�
@Oi�t�\@Oj�t�

v�t� � n�t� dUi dt: �29�

Accordingly to these de®nitions, a discrete version of (27) is given by

jOijn�1W n�1
i ÿ jOijnW n

i � Dt
P

j2V �i�
kNijk�WijvNij ÿ Fij�; �30�

where Wij is the averaged value on the boundary @Oi�t� \ @Oj�t� and from t � tn to t � tn � Dt of the

conserved quantity W and Fij is the averaged numerical ¯ux between @Oi�t� and @Oj�t� upon the same

time interval and control volume interface. The sum is extended to V �i�, which is the set of nodes

surrounding node i.

The numerical ¯ux Fij approximates the term

Fij �
1

kNijkDt

�tn�Dt

tn

�
@Oi�t�\@Oj�t�

F�t� � n�t� dUi dt � fA�F�Wi�t*�� � �nij;F�Wj�t*�� � �nij�; �31�

where �nij � Nij=kNijk is the normalized average vector, fA�x; y� is an averaging function and t* is a

time point between t � tn and t � tn � Dt. The overall order of approximation of the scheme depends

on the accuracy of the approximation of these terms in space and time. A method of ®rst-order

accuracy in space and time will be presented ®rst. In a subsequent step the extension to second-order

accuracy in the space and time variables will be outlined.

Before discussing these issues, it is worthwhile to remark that the conservation principle given by

(3) is valid if we take the function W � 1 and the corresponding Euler ¯ux F � 0. In this case the

equation represents an expression of the conservation of volume during the grid movement process:

jOijn�1 ÿ jOijn � Dt
P

j2V �i�
�vNijkNijk�: �32�

Needless to say, the veri®cation of (32) is a necessary condition for the overall numerical

conservation scheme to work properly. This can be ensured by computing the mid-step con®guration

using the arbitrarily prescribed grid displacement nodal velocities and thus calculating the mid-step

unit normal vector Nij according to this con®guration. Assuming constant grid velocities for each

node within the time interval �tn; tn � Dt�, the time-averaged normal velocity given by (29) can be

approximated as

vNij �
1

DtkNijk
vA � vB

2

� �
�
�tn�Dt

tn

n�t� dt � vA � vB

2

� �
� Nij

kNijk
� vA � vB

2

� �
� �nij: �33�

where vA and vB are the velocities corresponding to the points A and B de®ning each segment of the

control volume boundary.

The validity of this approximation depends on the algorithm selected to prescribe the grid motion

as well as on the time step size. For grid mappings that are smooth enough, these formulae perform

reasonably well and equation (32) is respected. The numerical testing of the volume conservation in

the whole domain is advisable in order to detect loss of conservation (even if using a conservative
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formulation) due either to the wrong selection of grid motion or to the loss of validity of the described

integration scheme.

3.2. Numerical ¯ux computation: Roe's scheme

One of the popular and ef®cient methods to carry out the evaluation of the upwind numerical ¯ux

for the Euler equations of gas dynamics is Roe's scheme. Like the Godunov method, the scheme is

based on the solution of a Riemann problem de®ned by two half-spaces ®lled with gas at states Wi and

Wj, separated by an interface de®ned by the orthogonal vector nij. The initial discontinuity (which in

general does not satisfy the Rankine±Hugoniot conditions) breaks into three generic discontinuities

compatible with the above-mentioned conditions, travelling at different speeds. The method proposed

by Godunov is based on the exact solution of the Riemann problem, which requires an iterative

procedure, whereas the Roe scheme is based on an approximate solution of the Riemann problem,

which is less expensive from the computational standpoint. The extension of Roe's approximate

Riemann solver to moving grids can be made by following the techniques proposed by Harten and

Hyman4 for the monodimensional case and by Nkonga and Guillard5 for the multidimensional case.

It is well known that the exact solution to the Riemann problem de®ned by Wi;Wj and nij (denoted

W R) is self-similar, i.e. W R�x; t;Wi;Wj� � W R��x=t�, Wi;Wj�, where the co-ordinate x is measured

along the direction of nij. The Godunov numerical ¯ux is then given by

F�Wi;Wj; nij� � F�W R�0;Wi;Wj�� � nij: �34�
In other words, the Godunov numerical ¯ux is given by the mathematical ¯ux projected onto the

direction nij particularized for the state vector solution of the corresponding Riemann problem at the

point x � 0, i.e. at the position of the original interface.

In order to avoid the iterative solution at each control volume interface of the associated Riemann

problem, Roe proposed the use of an approximate Riemann solver. The reader is referred to Reference

11 for theoretical details on this numerical scheme. Here the approach provided by Abgrall12 and Liu

and Vinokur8 has been followed. The Roe numerical ¯ux between two states Wi and Wj projected

along a direction is given by

F�Wi;Wj; nij� � 1
2
�F�Wi� � nij � F�Wj� � nij� � 1

2
j ~A�Wi;Wj; nij�j�Wi ÿWj�; �35�

where F�Wi� � nij is the mathematical ¯ux corresponding to the state Wi projected along the direction

nij and ~A�Wi;Wj; n� is the so-called Roe-averaged Jacobian matrix. For the single-component Euler

equations it can be shown that there exists an average state ~W such that
~
Aij�Wi;Wj� �

~
A� ~W �.

However, this property is lost for the general multicomponent case. The Roe-averaged Jacobian

matrix is not uniquely de®ned. The velocity, mass fractions and total enthalpy are averaged according

to the general formula

~M �
p
riMi �

p
rjMp

ri �
p
rj

; �36�

where M generically denotes one of these quantities. The averages ~k and ~wk are de®ned in such a way

as to ful®l the pressure jump condition

Dp � ~kD�re� � PG
k�1

~wkDrk; �37�

where Da � ai ÿ aj for each variable. Several ways have been proposed to compute the averaged

quantities ~k and ~wk . The approach followed here is the one described in Reference 12, to which the

reader is referred for further details.
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It has been observed that the use of the correction to the multicomponent Roe scheme proposed by

Larrouturou13 becomes mandatory to ensure the positiveness of the mass fractions. This correction

consists basically of upwinding all the partial densities according to the sign of the total mass

numerical ¯ux.

The classical scheme accounts for the ¯ux crossing a Eulerian interface @Oi \ @Oj. To extend this

to the more general case in which the interface moves with a normal velocity vNij, a simple

Lagrangian transport term has to be added, thus yielding the following expression for the Roe

numerical ¯ux:

F�Wi;Wj; nij� � 1
2
f�F�Wi� � F�Wj�� � nij ÿ vNij�Wi �Wj� � j ~A�Wi;Wj; nij� ÿ vNijIj�Wi ÿWj�g: �38�

3.3. Extension to second order

The consideration of the second-order scheme is based on a MUSCL-like extrapolation applied to

the above-presented ®rst-order scheme. The extension of van Leer's monodimensional, ®nite

difference method16 to the multidimensional case based on unstructured ®nite volumes1,2 has

provided satisfactory results also when combined with Roe's approximate Riemann solver or with

other numerical ¯ux schemes.15,16

If an estimate of the gradient of the variables is available, the cell-constant representation of the

variables can be replaced by a linear representation around the same cell-averaged value, thus

allowing for better estimates of the primitive variables at the cell boundaries, where the ¯ux

contributions are to be computed according to (38). The procedure is illustrated in Figure 2, where a

cut on the line joining two cells is shown. The second-order ¯uxes are obtained using the extrapolated

variables on the boundary, Wij and Wji, rather than the cell-averaged primitive variables Wi and Wj:
17

Wij � Wi � HWi � �x�i�j�=2 ÿ xi�
Wji � Wj � HWj � �x�i�j=2� ÿ xj�

� �
; �39�

where x�i�j�=2 is the position of the interface between control volumes and not the midpoint between

nodes i and j.

Since the conserved discrete variables are node-centred, the construction of an element-centred set

of gradients is straightforward. Assuming a linear (or bilinear) representation of the variables within

the element, a set of node-centred values of the gradient can then be obtained by averaging elemental

Figure 2. Spatial second-order ¯ux evaluation
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contributions. Denoting by T �i� the set of elements sharing node i, a discrete approximation for the

gradient of a generic variable W in the node-centred control volume Oi can be estimated as

HWi �
� P

j2T �i�
HWjjT �i� \ Oij

��jOij: �40�

Nevertheless, the use of the exact gradients in the calculation of the boundary-extrapolated

variables leads to non-physical oscillations in the solution in the vicinity of a discontinuity (or steep

gradient). To remedy this, a local gradient limitation is required. Equation (40) is replaced in practice

by

HWi � minmod �HWj�; j 2 T �i�: �41�
Recall that the minmod operator is de®ned as

minmod �a1; . . . ; an� � sgn�a1�min�ja1j; . . . ; janj� if sgn �a1� � � � � � sgn �an�;
0 otherwise:

�
�42�

A spatially second-order-accurate scheme is then obtained from (38) by replacing Wi and Wj by Wij

and Wji respectively as given by (39):

F�Wij;Wji; nij� � 1
2
f�F�Wij� � F�Wji�� � nij ÿ vNij�Wij �Wji�
� j

~
~A�Wij;Wji; nij� ÿ vNij

~
I j�Wij ÿWji�g: �43�

Second-order accuracy in time can be obtained with a two-step procedure combined with the

preceding MUSCL spatial interpolation. The reader is referred to Reference 14 for an outline of the

original ®nite difference method and to Reference 1 or 2 for details concerning its extension to the

unstructured ®nite volume format.

4. FLUID±STRUCTURE NUMERICAL COUPLING

4.1. Structural dynamics equations: integration algorithm

The multicomponent ¯uid dynamics model described in the preceding sections has to be coupled

with a general structural dynamics ®nite element model. The spatial discretization adopted in the

PLEXIS-3C code is based on the ®nite element formulation of the equilibrium equations. These

equations are typically expressed within structural elements using a Lagrangian scheme. The nodes of

structural elements thus typically follow the motion of material particles and no ¯ow of mass is

considered across structural element interfaces. The elemental deformation process induces elemental

internal stresses according to the constitutive law of the material under consideration. These

elemental stresses are projected (by spatial integration) onto the nodes, as is customary within the

®nite element method, thus yielding a set of equivalent internal nodal forces:

f int;i �
P

j2L�i�

�
Xj

BT
j

~
sj dXj; �44�

where L�i� is the set of elements including node i;Bj and sj are the elemental shape function

derivative matrix and the elemental Cauchy stresses corresponding to element j respectively and Xj is

the element volume in the current con®guration. The summation operator indicates a standard ®nite

element assembly procedure. In addition to these internal forces, external forces f ext;i are assumed to

be applied to the solid (body forces or externally applied loads). The reaction forces arising from

imposed essential boundary conditions and, in particular, the interaction forces acting from a ¯uid in

1272 A. SORIA AND F. CASADEI

INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1263±1284 (1997) # 1997 John Wiley & Sons, Ltd.



contact with the structure are considered among these external forces, as will be shown in the next

subsection. Directly speci®ed external forces can be simply prescribed as natural boundary

conditions.

The nodal masses Mi are obtained by spatial integration in a similar manner: the consistent mass

matrix obtained by integration of classical ®nite element shape functions is reduced to diagonal form,

in which each entry represents the corresponding nodal mass, by means of the row-sum mass-

lumping technique.

Having made the spatial discretization of the equilibrium equations, a semidiscrete form of

Newton's law reads

Mi _ui � f ext;i ÿ f int;i; �45�
where ui is the nodal velocity. Since nodal displacements are the basic unknowns within a Lagrangian

formulation, the ®rst-order equation (45) is usually expressed as

Mi
�di � f ext;i ÿ f int;i; �46�

where di are the nodal displacements. The sign criterion assumes that the external force induces the

solid deformation, whereas the internal force is the restoring one.

The central difference method is used to perform the time integration of this second-order equation.

This scheme is usually written as

un�1 � un � Dt

2
� _un � _un�1�;

dn�1 � dn � Dt un � Dt

2
_un

� �
; �47�

where d is the vector of nodal displacements, u is the vector of nodal velocities, _u is the vector of

accelerations, the upper suf®x n denotes a quantity at time tn and n� 1 denotes a quantity at time

tn�1 � tn � Dt.

The integration scheme (47) for the structural domain is implemented as follows in PLEXIS-3C.

Assume that a complete solution, i.e. all discretized quantities (displacements d, velocities u,

accelerations _u, stresses
~
s and related variables) are known at time tn. First an intermediate (half-

step) velocity is introduced,

�un�1=2 � un � Dt

2
_un; �48�

which is denoted �u in order to stress the difference from u. This is the constant velocity that would

transform con®guration n into con®guration n� 1 over a time interval Dt in the discretization

process. From the second equation of (47) the new displacements are given by

dn�1 � dn � Dt �un�1=2: �49�
On this new con®guration the stress

~
sn�1 can now be evaluated by application of the constitutive

relations. Then the new ®eld of accelerations _un�1 can be directly computed via the discretized

equilibrium equations (45) and ®nally the new velocities are obtained from the ®rst equation of (47).

It is important to note that in the time integration process the new con®guration induced by the

displacements dn�1 is obtained ®rst (at the initial time the con®guration is known by de®nition), then

equilibrium is applied on the current con®guration, while the velocities un�1 corresponding to this

new con®guration are computed only at the end of the time-stepping procedure.

Note that this time integration scheme is explicit in that all quantities in the right-hand-side terms

are known when the equations are applied, thus no system solver is required.
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4.2. Fluid±structure interaction modelling

The interaction between the ¯uid and the solid structure can be modelled in PLEXIS-3C thanks to

a numerical technique based on the Lagrange multiplier method.18,19 The boundary conditions for

moving solid walls for the ¯uid domain are directly concerned by this issue, so a short outline of the

method will be given here for the sake of completeness.

The basic interaction scheme for permanent ¯uid±structure contact (see de®nition below) is

illustrated in Figure 3. The ¯uid-structure interface is discretized by a double series of nodes

connected by a one-to-one relation. The motion of the structural nodes in the interface is Lagrangian,

whereas the interface nodes from the ¯uid side are ALE and their motion constantly follows that of

the corresponding structural nodes.

The task of the grid-rezoning technique within the bulk of the ¯uid domain consists of updating the

con®guration of `internal' ¯uid nodes so as to respect the movement of any Lagrangian interfaces (in

particular, of the structure), by simultaneously minimizing the grid distortion. Various remeshing

algorithms are presently implemented in PLEXIS-3C and there exists also a user routine by means of

which the analyst can prescribe a custom rezoning law. However, for the test cases presented here,

extensive use of the default automatic rezoning technique has been made. The reader is referred to

Reference 20 for details on this numerical technique.

The kinematic boundary condition u � nij � 0 has to be taken into consideration for the ¯uid node.

The boundary condition can be imposed on a weak manner by integrating the numerical ¯ux across

an interface lying on a wall, moving with normal velocity vN :

FSW�Wnb; nij� �
�
@Onb\@O

pnb�0 . . . 0 nijx nijy vN �T ds; �50�

where @Onb denotes the boundary of the control volume centred around the boundary node and @O
represents the boundary of the whole computational domain. This technique has been successfully

used in applications with no ¯uid±structure interaction. In particular, a for Eulerian solid boundary

(rigid wall) the above equation can be used by simply taking vN � 0. Note that the integration of the

numerical ¯ux given by (50) does not ensure a zero normal velocity for the boundary node.

For ¯uid-structure interaction problems a key point is to ensure that the ¯uid node and the linked

structural node maintain exactly the same normal velocity, so the wall boundary condition has to be

computed in a strong manner. The ¯uid experiences a reaction force r (momentum ¯ux) exactly equal

to the opposite of the action made by the ¯uid onto the structure. The appropriate way to compute this

reaction force will be described below. Note that, according to the central difference time integration

scheme, the reaction r has to be computed at time t � tn. Since the con®guration xn is known, a

Figure 3. Discretization of ¯uid±structure interface
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geometrical estimate of the normal nn in (51) can be made (the reader is referred to Reference 19 for

further details on this issue).

The interaction problem is numerically decoupled by ®nding the interaction forces r acting on each

interface code and by considering them separately according to the action±reaction principle applied

to the respective ¯uid or structural node. For an inviscid ¯uid, r is directed along the normal n to the

interface and is computed by imposing that the components of the ¯uid and structure velocities �uF

and uS� along n have to be identical, so as to avoid ¯uid detachment or superposition (permanent

contact):

uF � nÿ uS � n � nn
xun

F;x � nn
yun

F;y ÿ nn
xun

S;x ÿ nn
yun

S;y � 0: �51�
Similar constraints (linking the motion of two or more nodes) can be established for a number of

kinematic degrees of freedom of the overall system. These generalized constraints can be represented

as a set of nk equations (equal to the number of kinematic constraints)

Cun � b; �52�
where C is an nk � mk matrix (whose coef®cients are the normal vector components) and mk is the

subset of kinematic degrees of freedom of the system subjected to constraints. Owing to its

generality, this approach can be used to impose arbitrary linear links among any kinematic degrees of

freedom of the problem.

On the other hand, the equilibrium equation for the subset of constrained degrees of freedom is

expressed by means of the mk � mk system of equations (recall that this system is diagonal since the

mass-lumping technique is used)

Mn _un � fn
ext ÿ fn

int � rn: �53�
Using the integration scheme un � �unÿ1=2 � Dtn _un=2, equation (52) can be expressed as a function of

the acceleration as

C _un � 2

Dtn
�bÿ C �unÿ1=2� � s: �54�

The mk unknown reactions can be generically expressed as a function of the nk Lagrange multipliers

~
l as

r � CT

~
l: �55�

Substituting (55) into (53), these relations can be merged into the expression

C O

Mn ÿCT

� �
_un

l

� �
� s

fn
ext ÿ fn

int

� �
: �56�

The solution of this system of equations formally provides the accelerations of the constrained nodes

as well as the Lagrange multipliers which allow the computation of the reactions at the ¯uid±structure

interface. In practice, however, the Lagrangian multipliers and thus the reactions are computed ®rst,

then these are added to the prescribed external forces and ®nally all accelerations are obtained via the

general equilibrium equation (45).

Having obtained the reactions, the solid wall boundary condition is imposed in a strong manner by

FSW�Wnb; nij� � 0 . . . 0; rx; ry;

�
@Onb\@O

pnbvN ds

" #T

: �57�

ALE MULTICOMPONENT COMPRESSIBLE FLOW 1275

# 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1263±1284 (1997)



Note that the energy ¯ux is still computed in a weak manner. According to our preliminary results,

this approach seems to yield better performance.

5. NUMERICAL EXAMPLES

5.1. Shock tube computations

The shock tube test is a well-known problem extensively used for the assessment of numerical

methods in the analysis of compressible ¯ows. The test consists of the solution of a single Riemann

problem. A tube is divided into two parts separated by a membrane. The gas (single-component in

this case) ®lling the left and right half-spaces is initially at states WL and WR respectively. At time

t � 0 the membrane is assumed to break and the initial discontinuity (not satisfying the Rankine±

Hugoniot conditions) breaks into three characteristics discontinuities (shock wave, contact

discontinuity and rarefaction wave) travelling at different speeds. The tests presented in this section

correspond to the set of initial data proposed in the benchmark exercise carried out by Sod:21 rL � 1,

pL � 1; uL � 0 and rR � 0�125, pR � 0�1; uR � 0 respectively. The universal constant of gases, the

Figure 4. Sod shock tube: computational grids and deformed Lagrangian meshes

1276 A. SORIA AND F. CASADEI

INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1263±1284 (1997) # 1997 John Wiley & Sons, Ltd.



speci®c heat and the molar weight are selected so as to yield g � 1�4. The computations have been

done using both quadrangular and triangular elements with the grids shown in Figure 4(a). All

calculations have been carried out using a time-stepping procedure so as to have the minimum grid

Courant number Co � ��juj � c�Dt�=�Dx�ch equal to 0�5, �Dx�ch being the characteristic `diameter' of

each element.

A ®rst series of computations has been done on a Eulerian frame. A comparison has been made

among the results obtained with the ®rst- and second-order schemes using either triangles or

quadrangles.

The results obtained with the ®rst-order scheme using both triangles and quadrangles are compared

in Figure 5(a) with the exact solution. The shock wave is captured slightly better than the contact

discontinuity wave in all ®gures, since the time step selection is made on the basis of the Courant

number for the fastest signal �u� c�. No difference is observed in the sharpness of the discontinuities

obtained using triangles or quadrangles, but a signi®cant advantage in the capture of the rarefaction

fan tail is noted when quadrangles are used.

Figure 5. Sod shock tube: Eulerian solutions
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Figure 5(b) illustrates the results obtained with the second-order scheme. The solution quality is

noticeably improved. Note also that the differences between the results obtained with triangles and

those obtained with quadrangles are less important than in the ®rst-order case.

The same shock tube problem has then been analysed using a fully Lagrangian formulation,

prescribing each node in the grid to move with the velocity of the particles. The algorithm testing on

this frame is important because a correct solution necessarily precludes the appearance of (strong)

velocity oscillations (otherwise the node motion would produce elements with negative area). The

transient is illustrated in Figure 4(b), which shows the evolution of the computational grid as the

transient proceeds up to t � 0�16 s for both types of elements. Notice the regularity of the grid

compression between the shock and the contact discontinuity as well as the uniform widening of the

element size in the rarefaction fan zone.

Figure 6(a) shows the ®rst-order solution at t � 0�16 s for pressure, density and temperature. The

tracking of the shock wave is better than the one obtained in the Eulerian calculation, but a noticeable

numerical oscillation follows the contact discontinuity development. This defect is particularly

Figure 6. Sod shock tube: Lagrangian solutions
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evident in the temperature ®eld plot, where a certain delay of the temperature peak is also observed

with respect to the exact solution.

The results for the second-order Lagrangian computation are shown in Figure 6(b). Here again the

shock sharpness is greater than the one corresponding to the Eulerian computation. The appealing

improvement of this solution with respect to the ®rst-order Lagrangian computation is better observed

in the density and temperature ®elds, where the oscillations following the contact discontinuity

almost disappear and the temperature peak ®ts remarkably well the exact solution.

Note also that the ®rst-order solutions obtained with triangles and quadrangles are almost identical

in the rarefaction fan tail, the main differences being concentrated between the shock and the contact

discontinuity. For second-order computations the use of triangles or quadrangles produces

indistinguishing results.

5.2. Two-component shock tube

The ®rst test problem involving actual multicomponent ¯ow concerns a shock tube problem with

two components and aims at assessing the correctness of the scheme under these circumstances. The

problem data have been taken from Reference 13. The shock tube is divided into two equal zones

separated by a membrane that breaks at t � 0, thus initiating the transient. The left zone contains a

pure perfect gas (A) with gA � 1�4 at a state de®ned by pA � 1; rA � 1, whereas the right zone

contains another pure perfect gas (B) with gB � 1�2 at a state de®ned by pB � 0�1, rB � 0�125. The

test is a two-component version of the classical Sod problem analysed in Section 5.1. The

computations have been done using a Eulerian 10061 quadrangle grid (as in Figure 4(a), top).

The solution pattern is very similar to the one corresponding to the Sod problem, although the three

intermediate states separated by the characteristic waves are different (owing to the different values

of g for the two gases). The mass of gas A advances with the contact discontinuity, compressing gas

B, where the typical shock wave develops.

Figure 7 summarizes the results obtained with the ®rst- and second-order schemes and either the

Eulerian or the Lagrangian formulations for several ®elds (pressure, temperature, total density, mass

fraction of component A and velocity) at t � 0�16. As pointed out by Larrouturou,13 the modi®cation

of the Roe solver to perform the upwinding of the partial density ¯uxes is mandatory to preserve the

positivity of the scheme. These results agree also with those presented by Ruel.22

5.3. Shock diffraction by a deformable ring

This test aims at simulating the effect of a blast wave on a ring placed in the middle of a wind

tunnel. The test has been taken from Reference 22, where it was analysed by assuming ®xed wall

boundaries (rigid ring) and using a purely Eulerian formulation. Some changes in the problem data

have been made in order to formulate the problem according to the real values of the physical

(dimensional) quantities.

The computational domain is sketched in Figure 8. The ¯uid domain ABCD is initially at rest, with

p � 0�1 MPa and T� 300 K. The ¯uid is assumed to be a perfect gas (speci®c heat ratio g � 1�4,

molecular weight w � 28�96; cv� 20,780 J kmol71 K71). The universal constant of gases is

R� 8312 J kmol71 K71. A shock wave enters the channel at time t � 0 through the lower open

boundary AB. The shock is characterized by the upwind state pext � 0�4 MPa, Text � 480 K,

uext� (0, 311�28) m s71, satisfying the Rankine±Hugoniot conditions. The shock Mach number is

Maext � 0�896.

The shock interacts with the cylindrical shell structure depicted in Figure 8. The shell material is a

steel which is assumed to behave as an elastoplastic material characterized by the following
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constitutive properties: density 7800 kg m73, Young modulus 1�661011 Pa, Poisson ratio 0�333,

elastic limit 1�056108 Pa, plastic slope 1�661010 Pa. The shell thickness is 0�12 cm.

The boundary conditions for sides AD and BC are those corresponding to a solid wall, whereas the

far-®eld condition on the open boundary DC corresponds to the initial gas state. The structure is

blocked at point E opposite the shock incidence point. The analysed transient covers up to t� 3 ms.

The pressure ®eld at three selected times is displayed in Plate 1(a). Plate 1(b) shows the

temperature ®eld, Plate 1(c) the density ®eld and Plate 1(d) the velocity ®elds. The calculation is

merely demonstrative of the mechanical response of the steel shell to the impact of the blast wave,

since no other results are available for comparison.

Concerning the solution obtained in the ¯uid domain, the computed ®elds qualitatively agree fairly

well with the numerical results presented by Godunov et al.3 (using a ®rst-order-accurate, exact

Figure 7. Two-component shock tube: Eulerian and Lagrangian solutions
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Riemann solver numerical scheme) and Ruel22 (using a second-order-accurate HaÈnel±van Leer

scheme). A re¯ected shock appears and two symmetric supersonic zones develop behind the shell.

5.4. Supersonic ¯ow over a deformable step

This problem has also become a classical test to assess numerical schemes for compressible

¯ows.7,22±24 The supersonic ¯ow over a step was analysed in the mentioned references by assuming

rigid walls and by using a purely Eulerian formulation. In this test the step created in the channel at

time t� 0 will be assumed to be made up of a material ¯exible enough to undergo a relatively large

deformation.

The test de®nition is sketched in Figure 9. The channel length is 3 m and its height is 1 m. A perfect

gas is ¯owing at Mach 3 speed. The gas is assumed to have g � 1�4, w� 28�96 and

cv� 20,780 J kmol71 K71. The universal constant of gases is R� 8312 J kmol71 K71. The Mach 3

¯ow is characterized by p0 � 0�3 MPa, u� (1202.73, 0) m s71 and T� 400 K.

At time t� 0 an obstacle 0�2 m high appears at a distance 0�6 m from the tunnel inlet. This obstacle

is assumed to be made of steel, behaving as an elastoplastic material whose properties are the same as

in the previous example (Section 5.3). The steel shell is assumed to be 2 cm thick and has been

modelled using the same two-noded shell elements that have been employed in the preceding

examples.

Figure 8. Shock diffraction by a deformable ring: problem de®nition

Figure 9. Supersonic ¯ow over a deformable step: problem de®nition
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The produced shock hits the steel structure, distorting its initial shape according to the mechanical

boundary conditions applied. For the computation presented here, it has been assumed that the point

B has its three degrees of freedom (x-displacement, y-displacement and rotation) blocked, whereas

the point A has its y-displacement blocked. The transient analysed covers up to 3�5 ms.

The transient on the pressure ®eld is illustrated in Plate 2(a). The numerical solution obtained for

the steel shell deformation has not been compared with any other results. The computed pressure ®eld

within the ¯uid suf®ciently far from the deformable step agrees very well with the results published in

the above-mentioned references for the rigid step case. Note that the angle of the second shock

re¯ection (which takes place on the shell surface) is markedly smaller than what is observed in the

rigid step case. This is due to the convex-shaped deformation undergone by the horizontal part of the

structure close to the step wedge during the transient.

The transient results for the temperature are shown in Plate 2(b). Plate 2(c) shows the density ®eld

at the three selected time points and Plate 2(d) shows the velocity ®elds.

5.5. Explosion in a vessel

This last test is merely demonstrative and aims at showing the capabilities of the model in handling

applications similar to those encountered in safety engineering. In the ¯uid±structure problems

presented in the above subsections, the ¯ow as external to the structure. This case deals with an

internal ¯ow case: an explosion inside a container produces a signi®cant deformation in the tank

walls. The scope from the engineering standpoint would be to investigate the critical conditions that

make the vessel shell collapse.

The geometrical characteristics of the problem are sketched in Figure 10. The upper part of the ¯at

tank is initially ®lled with air, whereas the bottom part contains a heavier gas (argon), both of them at

an initial pressure pair � pA � 0�1 MPa. A bubble of hydrogen at high pressure pH � 2�5 MPa is also

assumed to be present at the initial time. The initial temperature Tair � TA � TH � 300 K is uniform

inside the container. The universal constant of gases is R� 8312 J kmol71 K71. The other gas

properties are summarized in Table I.

The vessel is made of steel, which is assumed to behave as an elastoplastic material characterized

by the same properties used in the example of Section 5.3. The assumed shell thickness is 1�5 mm and

the shell structure is blocked at points A and B (see Figure 10).

Figure 10. Explosion in a vessel: problem de®nition
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The transient will be analysed up to t� 2 ms. The computational results are illustrated by plotting

some selected scalar ®elds at times t� 0�5, 1, 1�5 and 2 ms. The deformation undergone by the vessel

is large enough to be noticed without a deformation ampli®cation factor (especially at the ®nal time).

The pressure transient is outlined in Plate 3(a). The estimated overpressure reached in the

neighbourhood of point B is about 3.2 MPa at time t� 1�5 ms. The evolution of the temperature ®eld

is shown in Plate 3(b), while Plate 3(c) shows the evolution of the air mass fraction. The dynamics of

the explosion is illustrated in Plate 3(d), where a plot of the velocity ®eld at the selected times has

been made. The expanding shock ®rst reaches the vertical, right-hand part of the vessel and only

somewhat later the upper side. The re¯ected shocks interact with the expanding blast wave,

producing a complex ¯ow pattern.

6. CONCLUSIONS

A new model for the treatment of multicomponent compressible ¯ows has been implemented in

PLEXIS-3C. It is based on a node-centred ®nite volume approach which uses the underlying ®nite

element mesh (made up of either triangles or quadrangles) to construct the conservation cells. The

computation of the numerical ¯ux among these cells is made by means of an approximate Riemann

solver technique. The grid motion, necessary to accommodate the Lagrangian (or material)

formulation for the structures with the typical Eulerian (or spatial) formulation in the ¯uid, has been

handled by means of an arbitrary Lagrangian±Eulerian technique. The combination of these new

models with the existing ¯uid±structure interaction algorithm takes carefully into account the

characteristics of the time-integration schemes used for the solid and ¯uid domains respectively and

ensures a strong coupling at the ¯uid±structure interface.

A set of benchmark exercises has been produced to assess the performance of the method for both

purely Eulerian and ALE computations.
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