INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 25, 1263-1284 (1997)

ARBITRARY LAGRANGIAN-EULERIAN MULTICOMPONENT
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SUMMARY

The aim of this work is to model the transient dynamic interaction between multicomponent compressible fluid
flows and general elastoplastic structures, possibly undergoing large motions and deformations. The fluid domain
is treated by a node-centred finite volume method, using an approximate Riemann solver to compute the
numerical flux. The use of an arbitrary Lagrangian—Eulerian kinematical description and a non-structured fluid
grid is essential for the adopted coupling strategy with the structural domain, which is modelled by finite
elements and uses a Lagrangian description. © 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the numerical simulation of fast transient dynamic phenomena involving fluid—structure
interactions (FSIs), the equilibrium equations for the structural domain are usually formulated in a
reference frame which moves simultaneously with the structure (Lagrangian description) and
discretized via finite elements (FEs). On the other hand, the analysis of computational fluid dynamics
(CFD) problems is normally formulated in a purely Eulerian manner, in which the discretization
points are fixed in the reference frame and finite volumes (FVs) are used for the spatial discretization.
The study of fluid—structure interactions thus requires the overall description to be formulated in such
a manner as to accommodate these two extreme situations.

The fluid domain is considered to be an arbitrary (multicomponent) mixture of inert Joule gases,
for which the internal energy is a monotonically increasing function of temperature, and not
undergoing any chemical process. However, the possibility of extending the present model to account
for reactive flows is taken into account in the selection of the numerical scheme.

The aim of this work is twofold. The first task is to extend some now well-established numerical
strategies for the treatment of the CFD problems under consideration from a Eulerian context towards
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a more general, arbitrarily moving, non-structured finite element grid by means of an arbitrary
Lagrangian—Eulerian (ALE) formulation. The selected numerical scheme is the node-centred finite
volume method,"? using an approximate Riemann solver to compute the numerical flux and
combined with a MUSCL-like technique to obtain second-order accuracy. The extension of the FV-
ALE formulation®* to non-structured grids proposed by Nkonga and Guillard® has been considered
here, taking into account also quadrangular elements.

The second task is to effectively couple the proposed (FV-based) model for multicomponent flow
with general, FE-based models of the structural components, possibly undergoing large
displacements, rotations and deformations. These FE models were already available in PLEXIS-
3C, a general computer code for transient dynamic analysis of fluid—structure systems being jointly
developed, since 1986, by the French Commissariat a 1’Energie Atomique (CEN Saclay) and the
European Commission (JRC Ispra); see e.g. Reference 6. The ability to perform coupled FSI analyses
has been proven essential in many real applications, because the behaviour of the fluid may be
strongly influenced by the motion and the response of the solid structure. The implementation of the
present multicomponent models in PLEXIS-3C is currently limited to 2D plane analysis,” but the
extension to other geometric descriptions (axisymmetric, 3D) is under way.

The governing equations for multicomponent compressible inviscid gas flows are given in Section
2. Then in Section 3 the numerical discretizations in time and space of these equations are described.
Section 4 presents the technique used for the coupling of the fluid and structural domain descriptions.
Finally, several numerical examples illustrating the performance of the method are given.

2. STATEMENT OF PROBLEM
2.1. Conservation equations

The multicomponent Euler equations are to be solved within the fluid domain. Restricting
ourselves in two space dimensions, these equations are expressed in conservative form as

W /ot +V - F(W) = 0. (1)

The conserved variables W and the components of the flux vector F = (F,, F) are given by

[ o1 ] [ e [ iy
P2 Py Palty
W= Pr |’ Fi= Pruy ’ £y = priy, ’ &
pu puz +p pu,
pv piiL, pu; +p
| PE | | (PE + p)u, | | (PE + p)u,, |
where p, represents the partial density of component k(k=1,2,...,T),u, and u, are the

components of the velocity vector u, E is the total energy per unit mass and p is the total density

given by Y, p,.
The total energy E is made up of the internal energy per unit mass, e, and the kinetic energy per

unit mass, |[uf|?/2, i.e. E = e + ||lu|?/2. The internal energy per unit volume is given by
r
pe = kZ Prex- 3)
=1
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Assuming a mixture of Joule gases, each component of the mixture has a temperature state equation
of the form

ek = ek(Tk), (4)

where T}, is the thermodynamic temperature of species k (related to the average kinetic energy of
particles from the kth species), thus having ¢,(0) = 0, Vk.

Local thermodynamic equilibrium will be assumed, so the thermal field will be characterized by a
unique temperature for all components, i.e. 7= T, = --- = T} at each spatial location. Assuming a
polynomial function of degree n, for each constitutive relation, we have

ny )
e = 2; CkiTl. (5)
i=

Given a state vector W of conserved variables, equations (3) and (4) allow for the computation (by
means of an iterative algorithm if necessary) of the temperature as a function of p, and e;.
For a mixture of gases with constant heat capacities the temperature is given by

T=e/C,, (6)

where the heat capacity of the mixture at constant volume, C,, is calculated according to
r Pi
CV = Z Cvk DS (7)
k=1 p

Here C,, stands for the specific heat at constant volume for component £.
The equation linking the pressure p with the conserved quantities W; is provided by the following
pressure state equation, valid for an ideal mixture of Joule gases:

r

Pk

p=ppy.....pr.pe) =RT Y. TE, ®)
k=1 Wi

where R is the universal constant of gases and wy, the molar mass of component k. Note that equation

(8) is just an expression of Dalton’s law of partial pressures. The partial derivatives of pressure with

respect to the conserved variables are

op I dey
=g/ (20 ) ”
dp RT
=L 20 el(T). 10
Lk opr e rey(T) (10)

In addition to these derivatives, another important physical property is the sound speed, which is

given by
SRR
C_\/<8p)s,mk_\/(’€h+k§1”p =y ey ) (1D

where the partial derivative is computed at constant entropy s and number of moles m; of each
component. The hypothesis of a mixture of Joule gases has been made to obtain the right-hand-side
expression, and / denotes the mixture enthalpy per unit mass:

h=e+p/p. (12)
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2.2. Source term and chemistry

The consideration of the enthalpy of formation for each species, Ah?, 4> has been omitted in the
expression of the internal energy. It would play a role only in the case where chemical processes were
considered when taking into account a source term in (1). Although the present work does not
consider the presence of source terms, a possible future extension to include this feature has been
taken into account when developing the numerical model. In this case, maintaining the assumption of
the absence of any diffusive phenomena (viscous effects, thermal conduction or molecular diffusion),
the governing equation would be

W ot +V - F(W) = S(W). (13)

The source term is given by

r T
S(w) = <b1,ﬁz,---,Dr,pgx,pgy,pg-u —kZ Ah(f{kbk) : (14)
=1

where g = (g, g,) are the body forces and p, is the local rate of production of component k, which
has to be computed from the local chemical composition and the chemical characteristics of the
mixture.

2.3. Hyperbolicity of conservation equations

Given an arbitrary direction in space defined by two points i and j, let us denote by n;; the unit
vector normal to this direction. A projection of the flux vector F onto n;; can be made, yielding
Fy(W) = F(W) - n;. The conservation system (1) is known to be hyperbolic, so the Jacobian matrix
associated with F; (W),

Ay(W) = oF (W) /oW, (15)

can be diagonalized and has real eigenvalues for all physically compatible states for any direction
projection ny;. In addition, it can be shown that Fj;(W) = 4;(W)W (Euler identity). A sufficient
condition for the hyperbolicity of the system is that the pressure equation of state verifies the Euler
relationship, i.e.
p I o T 16
p—apepe+k§1 apkpk—erng1 TP (16)
as is the case for a mixture of Joule gases.
These properties imply that there exists a set of characteristic variables U = f (W) for which the
conservation equation (1) can be decoupled into a system of I" + 3 pure advection equations (linear or
not) whose advection speeds are the eigenvalues of 4,;:

U /ot + AVU =0, (17)

where
A=T"4;T =diag{hy..... 4y 2y, 23}, (18)

with 4, = u,, 4, = u, + ¢ and /3 = u,, — ¢, c being the sound speed associated with the state /. The
first I' + 1 characteristic fields are associated with convective waves, whereas the last two are
associated with pressure waves. The (linearized) passage from conserved to characteristic variables is
made by means of a transformation matrix 7~!:

Uu=r1"'w. (19)
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The Jacobian matrix is given by

(O — Ypu, Yin; 0

)

4,0m = | Go+xlulP/2n; —w,u w,[+un; —knu oy (20)

u, (1 + klul*/2 — H) Hn; — ku,u (x + Du,

where Jy; is the Kronecker symbol, #, = u - n is the velocity projection along the normal, / is the unit
tensor, Y, = p;/p is the mass fraction of component k and H = h + lu||?/2. The notation un;; (resp.
n;u) denotes the diadic product of vectors, i.e. (un)y = uny;.

Using the same notation, the transformation matrices are expressed as

O 0 Y, Y,
T(W) = u cb; u+cn; u—cn @1

’

lul?/2 = x,/kc cb;-w) H+cu, H-—cu,

oy — V(g + kllul*/2) Y, Kku —Y,x

. 1 —c(bi/- ) cby; 0
—w)= 2 1. 2/ 1 _ ’ (22)
| sGutxlul?/2—=cu,)  (m;—xu)  K/2
You+rlulP/2+cu,)  —3(en;+xu)  x/2

where b;; is the unit vector orthogonal to ny, i.e. by = (n;,, —n;;).

The reader is referred to Reference 8 for further details as well as for the extension to the non-
equilibrium formulation.

When the sound speed is very large with respect to the flow speed (i.e. low Mach number), an
explicit time integration scheme is unable to correctly track the propagation of all signals. The
pressure waves associated with the eigenvalues 4, and 4, propagate very fast across the domain. The
hyperbolic character of the equations is preserved, but the influence of the pressure waves affects very
rapidly the entire domain. The correct tracking of the convective signals would require an implicit
time integration scheme to overcome the severe time step restriction due to the Courant-Friedrichs—
Lewy (CFL) condition for the fast sonic waves.

However, for the kind of applications under consideration (fluid—structure interaction and fast
transient phenomena), pressure waves are of major relevance. According to this, an explicit time
integration scheme seems more adequate to treat the equations within the computational domain. The
way in which this time integration scheme is accommodated with the explicit scheme used for the
integration of the equilibrium equations in the solid (Lagrangian) domain will be described below.

3. TIME AND SPACE DISCRETIZATION
3.1. Arbitrary Langrangian—Eulerian formulation

The numerical discretization of the conservation equations has been carried out by means of a non-
structured finite volume formulation, fully compatible with standard finite element grids. Three-
noded triangles and four-noded quadrangles have been considered. The arbitrary Lagrangian—
Eulerian method presented here is based on the Godunov scheme®’ as recently reformulated in
unstructured 3D moving domains by Nkonga and Guillard.’

The computational domain will be assumed to be divided into non-overlapping node-centred
control volumes delimited by the medians of triangles and quadrangles as shown in Figure 1. The
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T 3Q;(1)

Figure 1. Node-centred control volumes €2; and €);

simultaneous use of triangles and quadrangles to construct the node-centred control volumes has been
discussed in Reference 10, where several techniques to treat the quadrangles are presented and
compared.

We will assume that each grid point is moving with respect to the fixed co-ordinate system with a
velocity field v(x). The conservation equation (1) can be integrated on the moving control volume €2;,
whose boundary will be denoted by dQ;. The total rate of change of the conserved quantity within the
moving control volume is given by Reynolds’ transport theorem:

EJ W dQ, :J (ﬁ+v : (WV)) do, :J W o, +J Wv-w]dY,  (23)
dt Jo ) am \ 0 om O 90, (1)

where dY; is an element of the control volume boundary 9Q;(7).

Note that Green’s theorem has been applied to obtain the last equation, where n = n(¢) is the
normal unit vector to the boundary 0Q;(f) (outwardly oriented).

Integration between ¢ = ¢, and ¢ = ¢, + At yields

WdQ,-—J

t,+At oW 1, +At
W dQ, = J J — dQ, dr + J J [W(v-n)] dY;dr. (24)
Q() () ()

; ot ;

n n

J Q,(t,+Ar)

Let us denote by W/ the set of discrete variables approximating the solution of the continuous
problem. The quantity W/ is then defined as the averaged value of the conserved variable # within
the control volume Q; at time ¢ = ¢,

W = (J WdQ,.) / 0, (25)
Q1)

where |Q,|" represents the measure (area in two space dimensions) of the control volume €; at time
t = t,. Using equation (1), we have

t, t,+At
|Qi|n+1 VVin+1 _ |Qi|nVVin — J J

[ (v-n)] dY, df — J
1, Jaor)

1

J [V-F(W)] dQy; dr. (26)
n Qi(t)
Application of Green’s theorem yields

t,+At

1, 1,

n

t,+At
QI — =j J [7)v - )] Y, di —J J [FO7) - n] dY, dr. (27)
80, (1) aQ,(1)

n
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The time-averaged normal (outwardly oriented) vector corresponding to the portion of the
boundary 9€;(¢) between €); and €; will be denoted as

1 t,+At
N, = _J J n() d, dr, (28)
At), 30Q,(HNIL (1)
whereas the time-averaged normal velocity of the control volume boundary will be represented as
1 fn+At
Uyjj = —— v(?) -n(?) dY; dr. (29)
N A IN I Jz,, J 00,(HN3 1)
Accordingly to these definitions, a discrete version of (27) is given by
|Qi|nHW,anrl — Q"W = At 3 INII(Wyop; — @), (30)
JeV @)

where W;; is the averaged value on the boundary d€Q,(r) N 9€(7) and from t = 1, to t = ¢, + At of the
conserved quantity W and ®;; is the averaged numerical flux between 0€2,(f) and 0€;(¢) upon the same
time interval and control volume interface. The sum is extended to V' (i), which is the set of nodes
surrounding node i.

The numerical flux ®; approximates the term

1

t, At
D, ~ —J J F(2) - (o) dY; dt = fy(F(W,(¢*)) - m;;, F(W;(t¥)) - m), (31)
IN;lIAz J, 00,(0N0 (1)

where n; = N;/[[N;| is the normalized average vector, f(x, ) is an averaging function and t* is a
time point between ¢ = ¢, and ¢ = ¢, + At. The overall order of approximation of the scheme depends
on the accuracy of the approximation of these terms in space and time. A method of first-order
accuracy in space and time will be presented first. In a subsequent step the extension to second-order
accuracy in the space and time variables will be outlined.

Before discussing these issues, it is worthwhile to remark that the conservation principle given by
(3) is valid if we take the function W = 1 and the corresponding Euler flux ' = 0. In this case the
equation represents an expression of the conservation of volume during the grid movement process:

Q"™ — 1" = Ar Y (o INg ) (32
Jjev

Needless to say, the verification of (32) is a mecessary condition for the overall numerical
conservation scheme to work properly. This can be ensured by computing the mid-step configuration
using the arbitrarily prescribed grid displacement nodal velocities and thus calculating the mid-step
unit normal vector N;; according to this configuration. Assuming constant grid velocities for each
node within the time interval [z,, ¢, + At], the time-averaged normal velocity given by (29) can be
approximated as

_ 1 va+vey [ _vatvey Ny ovatvey
UN”_AtHNi]-H( 2 )J, “(t)dt_( 2 )'||N..||_< 2 )“/

g

(33)

where v, and vg are the velocities corresponding to the points A and B defining each segment of the
control volume boundary.

The validity of this approximation depends on the algorithm selected to prescribe the grid motion
as well as on the time step size. For grid mappings that are smooth enough, these formulae perform
reasonably well and equation (32) is respected. The numerical testing of the volume conservation in
the whole domain is advisable in order to detect loss of conservation (even if using a conservative
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formulation) due either to the wrong selection of grid motion or to the loss of validity of the described
integration scheme.

3.2. Numerical flux computation: Roe’s scheme

One of the popular and efficient methods to carry out the evaluation of the upwind numerical flux
for the Euler equations of gas dynamics is Roe’s scheme. Like the Godunov method, the scheme is
based on the solution of a Riemann problem defined by two half-spaces filled with gas at states ¥; and
W, separated by an interface defined by the orthogonal vector n;;. The initial discontinuity (which in
general does not satisfy the Rankine—Hugoniot conditions) breaks into three generic discontinuities
compatible with the above-mentioned conditions, travelling at different speeds. The method proposed
by Godunov is based on the exact solution of the Riemann problem, which requires an iterative
procedure, whereas the Roe scheme is based on an approximate solution of the Riemann problem,
which is less expensive from the computational standpoint. The extension of Roe’s approximate
Riemann solver to moving grids can be made by following the techniques proposed by Harten and
Hyman” for the monodimensional case and by Nkonga and Guillard® for the multidimensional case.

It is well known that the exact solution to the Riemann problem defined by W;, W; and n;; (denoted
WR) is self-similar, i.e. WR(x, ¢, W,, W) = WR((x/1), W, W;), where the co-ordinate x is measured
along the direction of n;. The Godunov numerical flux is then given by

O(W;, Wy, my) = FOVR(0, W, W) - my. (34
In other words, the Godunov numerical flux is given by the mathematical flux projected onto the
direction n;; particularized for the state vector solution of the corresponding Riemann problem at the
point x = 0, i.e. at the position of the original interface.

In order to avoid the iterative solution at each control volume interface of the associated Riemann
problem, Roe proposed the use of an approximate Riemann solver. The reader is referred to Reference
11 for theoretical details on this numerical scheme. Here the approach provided by Abgrall'? and Liu
and Vinokur® has been followed. The Roe numerical flux between two states W; and W, projected
along a direction is given by

O(W;, Wy, my) = S [FOV,) - g + F(W)) - ng] + S AV, W, mp)| (O, — W), (35)

where F(W;) - n;; is the mathematical flux corresponding to the state W; projected along the direction
n; and A(W;, W;, ) is the so-called Roe-averaged Jacobian matrix. For the single-component Euler
equations it can be shown that there exists an average state W such that A4;(W;, W;) = A(W).
However, this property is lost for the general multicomponent case. The Roe-averaged Jacobian
matrix is not uniquely defined. The velocity, mass fractions and total enthalpy are averaged according
to the general formula

«/piA/[i'i'«/ij
\/pi+\/pj ’

where M generically denotes one of these quantities. The averages k and j, are defined in such a way
as to fulfil the pressure jump condition

M= (36)

r

k=1
where Aa = a; — a; for each variable. Several ways have been proposed to compute the averaged
quantities K and ;. The approach followed here is the one described in Reference 12, to which the

reader is referred for further details.
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It has been observed that the use of the correction to the multicomponent Roe scheme proposed by
Larrouturou'® becomes mandatory to ensure the positiveness of the mass fractions. This correction
consists basically of upwinding all the partial densities according to the sign of the total mass
numerical flux.

The classical scheme accounts for the flux crossing a Eulerian interface 9Q; N d€);. To extend this
to the more general case in which the interface moves with a normal velocity vy;, a simple
Lagrangian transport term has to be added, thus yielding the following expression for the Roe
numerical flux:

(W, Wy, my) = S {[F(W,) + FOV)] - my — oy (W, + W) + |AGW,, W, ) — o LI(W; = W) (38)

3.3. Extension to second order

The consideration of the second-order scheme is based on a MUSCL-like extrapolation applied to
the above-presented first-order scheme. The extension of van Leer’s monodimensional, finite
difference method'® to the multidimensional case based on unstructured finite volumes'? has
provided satisfactory results also when combined with Roe’s approximate Riemann solver or with
other numerical flux schemes.'>'®

If an estimate of the gradient of the variables is available, the cell-constant representation of the
variables can be replaced by a linear representation around the same cell-averaged value, thus
allowing for better estimates of the primitive variables at the cell boundaries, where the flux
contributions are to be computed according to (38). The procedure is illustrated in Figure 2, where a
cut on the line joining two cells is shown. The second-order fluxes are obtained using the extrapolated

variables on the boundary, W;; and W, rather than the cell-averaged primitive variables /¥; and W}:17

[ Wy =W; + VW, (X — %) } (39)

Wii=W;+ VW, Ky — %)

where X, is the position of the interface between control volumes and nof the midpoint between
nodes i and j.

Since the conserved discrete variables are node-centred, the construction of an element-centred set
of gradients is straightforward. Assuming a linear (or bilinear) representation of the variables within
the element, a set of node-centred values of the gradient can then be obtained by averaging elemental

O Extrapolated variable

O Primitive variable node

Figure 2. Spatial second-order flux evaluation
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contributions. Denoting by 7'(i) the set of elements sharing node i, a discrete approximation for the
gradient of a generic variable W in the node-centred control volume Q; can be estimated as

VW, = ( > VWITG)N Q,-|>/|Q,-|. (40)
J€T()

Nevertheless, the use of the exact gradients in the calculation of the boundary-extrapolated
variables leads to non-physical oscillations in the solution in the vicinity of a discontinuity (or steep
gradient). To remedy this, a local gradient limitation is required. Equation (40) is replaced in practice
by

VW, = minmod (VW)), j € T(). 41)
Recall that the minmod operator is defined as
minmod (@, ... 4.) = { sgn(a) min(lay|. ... la,l) if sgn (@) =+ =sgn@). 4
otherwise.

A spatially second-order-accurate scheme is then obtained from (38) by replacing W; and W; by W;
and W respectively as given by (39):

O(Wy, Wy, my) = S {[FWy) + FW)] - ny; — vy (W + W)
+ |A( i Wiis ) — vNijl'( i — Wil (43)

Second-order accuracy in time can be obtained with a two-step procedure combined with the
preceding MUSCL spatial interpolation. The reader is referred to Reference 14 for an outline of the
original finite difference method and to Reference 1 or 2 for details concerning its extension to the
unstructured finite volume format.

4. FLUID-STRUCTURE NUMERICAL COUPLING
4.1. Structural dynamics equations: integration algorithm

The multicomponent fluid dynamics model described in the preceding sections has to be coupled
with a general structural dynamics finite element model. The spatial discretization adopted in the
PLEXIS-3C code is based on the finite element formulation of the equilibrium equations. These
equations are typically expressed within structural elements using a Lagrangian scheme. The nodes of
structural elements thus typically follow the motion of material particles and no flow of mass is
considered across structural element interfaces. The elemental deformation process induces elemental
internal stresses according to the constitutive law of the material under consideration. These
elemental stresses are projected (by spatial integration) onto the nodes, as is customary within the
finite element method, thus yielding a set of equivalent internal nodal forces:

fi= © | Blg e, (44)
JeL@) JE;
where L(i) is the set of elements including node i, B; and o; are the elemental shape function
derivative matrix and the elemental Cauchy stresses correspondlng to element j respectively and E; is
the element volume in the current configuration. The summation operator indicates a standard ﬁmte
element assembly procedure. In addition to these internal forces, external forces f,, ; are assumed to
be applied to the solid (body forces or externally applied loads). The reaction forces arising from
imposed essential boundary conditions and, in particular, the interaction forces acting from a fluid in
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contact with the structure are considered among these external forces, as will be shown in the next
subsection. Directly specified external forces can be simply prescribed as natural boundary
conditions.

The nodal masses M; are obtained by spatial integration in a similar manner: the consistent mass
matrix obtained by integration of classical finite element shape functions is reduced to diagonal form,
in which each entry represents the corresponding nodal mass, by means of the row-sum mass-
lumping technique.

Having made the spatial discretization of the equilibrium equations, a semidiscrete form of
Newton’s law reads

Ma, = f —fi i (45)
(A} nt,i

ext,i

where u, is the nodal velocity. Since nodal displacements are the basic unknowns within a Lagrangian
formulation, the first-order equation (45) is usually expressed as

Md, = — fin s, (46)

where d; are the nodal displacements. The sign criterion assumes that the external force induces the
solid deformation, whereas the internal force is the restoring one.

The central difference method is used to perform the time integration of this second-order equation.
This scheme is usually written as

ext,i

At
un+1 —u" _{_7(“” _l_l'anrl)7
At
dVl-H = dn + At(u” + jl.ln), (47)

where d is the vector of nodal displacements, u is the vector of nodal velocities, u is the vector of
accelerations, the upper suffix » denotes a quantity at time ¢” and n + 1 denotes a quantity at time
="+ At

The integration scheme (47) for the structural domain is implemented as follows in PLEXIS-3C.
Assume that a complete solution, i.e. all discretized quantities (displacements d, velocities u,
accelerations u, stresses g and related variables) are known at time ¢”. First an intermediate (half-
step) velocity is introduced,

- At .

un+l/2 — +7un’ (48)
which is denoted u in order to stress the difference from u. This is the constant velocity that would
transform configuration » into configuration n + 1 over a time interval A in the discretization
process. From the second equation of (47) the new displacements are given by

dn+1 — dn + Aﬂ_ln+1/2. (49)

On this new configuration the stress ¢"*! can now be evaluated by application of the constitutive
relations. Then the new field of accelerations u"*!' can be directly computed via the discretized
equilibrium equations (45) and finally the new velocities are obtained from the first equation of (47).

It is important to note that in the time integration process the new configuration induced by the
displacements d"*! is obtained first (at the initial time the configuration is known by definition), then
equilibrium is applied on the current configuration, while the velocities u"*! corresponding to this
new configuration are computed only at the end of the time-stepping procedure.

Note that this time integration scheme is explicit in that all quantities in the right-hand-side terms
are known when the equations are applied, thus no system solver is required.
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4.2. Fluid—structure interaction modelling

The interaction between the fluid and the solid structure can be modelled in PLEXIS-3C thanks to
a numerical technique based on the Lagrange multiplier method.'®'? The boundary conditions for
moving solid walls for the fluid domain are directly concerned by this issue, so a short outline of the
method will be given here for the sake of completeness.

The basic interaction scheme for permanent fluid-structure contact (see definition below) is
illustrated in Figure 3. The fluid-structure interface is discretized by a double series of nodes
connected by a one-to-one relation. The motion of the structural nodes in the interface is Lagrangian,
whereas the interface nodes from the fluid side are ALE and their motion constantly follows that of
the corresponding structural nodes.

The task of the grid-rezoning technique within the bulk of the fluid domain consists of updating the
configuration of ‘internal’ fluid nodes so as to respect the movement of any Lagrangian interfaces (in
particular, of the structure), by simultaneously minimizing the grid distortion. Various remeshing
algorithms are presently implemented in PLEXIS-3C and there exists also a user routine by means of
which the analyst can prescribe a custom rezoning law. However, for the test cases presented here,
extensive use of the default automatic rezoning technique has been made. The reader is referred to
Reference 20 for details on this numerical technique.

The kinematic boundary condition u - n; = 0 has to be taken into consideration for the fluid node.
The boundary condition can be imposed on a weak manner by integrating the numerical flux across
an interface lying on a wall, moving with normal velocity vy:

(I)SW(Wrl M) = LQ - P[0 .. 0 nyy ny, vN]T do, (50)
‘nb

where 0Q,;, denotes the boundary of the control volume centred around the boundary node and 0Q2
represents the boundary of the whole computational domain. This technique has been successfully
used in applications with no fluid—structure interaction. In particular, a for Eulerian solid boundary
(rigid wall) the above equation can be used by simply taking vy, = 0. Note that the integration of the
numerical flux given by (50) does not ensure a zero normal velocity for the boundary node.

For fluid-structure interaction problems a key point is to ensure that the fluid node and the linked
structural node maintain exactly the same normal velocity, so the wall boundary condition has to be
computed in a strong manner. The fluid experiences a reaction force r (momentum flux) exactly equal
to the opposite of the action made by the fluid onto the structure. The appropriate way to compute this
reaction force will be described below. Note that, according to the central difference time integration
scheme, the reaction r has to be computed at time ¢ = ¢". Since the configuration x" is known, a

STRUCTURE STRUCTURE =

Figure 3. Discretization of fluid—structure interface
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geometrical estimate of the normal n” in (51) can be made (the reader is referred to Reference 19 for
further details on this issue).

The interaction problem is numerically decoupled by finding the interaction forces r acting on each
interface code and by considering them separately according to the action—reaction principle applied
to the respective fluid or structural node. For an inviscid fluid, r is directed along the normal n to the
interface and is computed by imposing that the components of the fluid and structure velocities (ug
and ug) along n have to be identical, so as to avoid fluid detachment or superposition (permanent
contact):

__.n,n n, n n, n n,.n
Up -0 — Ug - 0= mup  + Agug , — nyug . — nyug , = 0. (€N

Similar constraints (linking the motion of two or more nodes) can be established for a number of
kinematic degrees of freedom of the overall system. These generalized constraints can be represented
as a set of n; equations (equal to the number of kinematic constraints)

Cu" = b, (52)

where C is an n;, x m; matrix (whose coefficients are the normal vector components) and m;, is the
subset of kinematic degrees of freedom of the system subjected to constraints. Owing to its
generality, this approach can be used to impose arbitrary linear links among any kinematic degrees of
freedom of the problem.

On the other hand, the equilibrium equation for the subset of constrained degrees of freedom is
expressed by means of the m;, x m, system of equations (recall that this system is diagonal since the
mass-lumping technique is used)

M'a" = £ — £y + 1 (53)

Using the integration scheme u” = a"~!/2 4+ At,u" /2, equation (52) can be expressed as a function of
the acceleration as

2

cu' =~
YA

(b—Cu" %) =s. (54)

The m;, unknown reactions can be generically expressed as a function of the »;, Lagrange multipliers
A as

r=C" (55)

Substituting (55) into (53), these relations can be merged into the expression

e el7 ] e 59

The solution of this system of equations formally provides the accelerations of the constrained nodes
as well as the Lagrange multipliers which allow the computation of the reactions at the fluid—structure
interface. In practice, however, the Lagrangian multipliers and thus the reactions are computed first,
then these are added to the prescribed external forces and finally all accelerations are obtained via the
general equilibrium equation (45).

Having obtained the reactions, the solid wall boundary condition is imposed in a strong manner by

T
OV (Wpomy) = [0 ... O,rx,ry,J Pty do | . (57)
90,0
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Note that the energy flux is still computed in a weak manner. According to our preliminary results,
this approach seems to yield better performance.

5. NUMERICAL EXAMPLES
5.1. Shock tube computations

The shock tube test is a well-known problem extensively used for the assessment of numerical
methods in the analysis of compressible flows. The test consists of the solution of a single Riemann
problem. A tube is divided into two parts separated by a membrane. The gas (single-component in
this case) filling the left and right half-spaces is initially at states W} and Wy respectively. At time
t = 0 the membrane is assumed to break and the initial discontinuity (not satisfying the Rankine—
Hugoniot conditions) breaks into three characteristics discontinuities (shock wave, contact
discontinuity and rarefaction wave) travelling at different speeds. The tests presented in this section
correspond to the set of initial data proposed in the benchmark exercise carried out by Sod:?' pL=1,
pL=1l,uy =0and pg = 0-125, pg = 0-1, uy = 0 respectively. The universal constant of gases, the

T T T T T T T T L T T T T T O T I T L LT L T T T T T T LT T T T T T T T LI Tl

100 quadrilateral elements

T NN NN NN NN N NN ST NNP NN

200 triangular elements

a)

\j

TTT 1T T T T T T TONMIT L
D T
TITT T T T T T T LTI L]
T
TITITT
T

i TIITIIT T
TTOTTTTTTITIIIL I

T T T
t I 1 N N N N N N N N N | T

100 quadrilateral elements

b)

Figure 4. Sod shock tube: computational grids and deformed Lagrangian meshes
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specific heat and the molar weight are selected so as to yield y = 1-4. The computations have been
done using both quadrangular and triangular elements with the grids shown in Figure 4(a). All
calculations have been carried out using a time-stepping procedure so as to have the minimum grid
Courant number Co = [(Ju| + ¢)Af]/(Ax),, equal to 0-5, (Ax),, being the characteristic ‘diameter’ of
each element.

A first series of computations has been done on a Eulerian frame. A comparison has been made
among the results obtained with the first- and second-order schemes using either triangles or
quadrangles.

The results obtained with the first-order scheme using both triangles and quadrangles are compared
in Figure 5(a) with the exact solution. The shock wave is captured slightly better than the contact
discontinuity wave in all figures, since the time step selection is made on the basis of the Courant
number for the fastest signal (1 + ¢). No difference is observed in the sharpness of the discontinuities
obtained using triangles or quadrangles, but a significant advantage in the capture of the rarefaction
fan tail is noted when quadrangles are used.

, PRESSURE PRESSURE
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triangles triangles

quadrangles

80 0.80 1.00 0.0 0.aC 020 030 0.8 0.9 1.0
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Figure 5. Sod shock tube: Eulerian solutions
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Figure 5(b) illustrates the results obtained with the second-order scheme. The solution quality is
noticeably improved. Note also that the differences between the results obtained with triangles and
those obtained with quadrangles are less important than in the first-order case.

The same shock tube problem has then been analysed using a fully Lagrangian formulation,
prescribing each node in the grid to move with the velocity of the particles. The algorithm testing on
this frame is important because a correct solution necessarily precludes the appearance of (strong)
velocity oscillations (otherwise the node motion would produce elements with negative area). The
transient is illustrated in Figure 4(b), which shows the evolution of the computational grid as the
transient proceeds up to ¢ = 0-16s for both types of elements. Notice the regularity of the grid
compression between the shock and the contact discontinuity as well as the uniform widening of the
element size in the rarefaction fan zone.

Figure 6(a) shows the first-order solution at t = 0-16 s for pressure, density and temperature. The
tracking of the shock wave is better than the one obtained in the Eulerian calculation, but a noticeable
numerical oscillation follows the contact discontinuity development. This defect is particularly
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Figure 6. Sod shock tube: Lagrangian solutions
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evident in the temperature field plot, where a certain delay of the temperature peak is also observed
with respect to the exact solution.

The results for the second-order Lagrangian computation are shown in Figure 6(b). Here again the
shock sharpness is greater than the one corresponding to the Eulerian computation. The appealing
improvement of this solution with respect to the first-order Lagrangian computation is better observed
in the density and temperature fields, where the oscillations following the contact discontinuity
almost disappear and the temperature peak fits remarkably well the exact solution.

Note also that the first-order solutions obtained with triangles and quadrangles are almost identical
in the rarefaction fan tail, the main differences being concentrated between the shock and the contact
discontinuity. For second-order computations the use of triangles or quadrangles produces
indistinguishing results.

5.2. Two-component shock tube

The first test problem involving actual multicomponent flow concerns a shock tube problem with
two components and aims at assessing the correctness of the scheme under these circumstances. The
problem data have been taken from Reference 13. The shock tube is divided into two equal zones
separated by a membrane that breaks at # = 0, thus initiating the transient. The left zone contains a
pure perfect gas (A) with y, = 1-4 at a state defined by p, =1, p, = 1, whereas the right zone
contains another pure perfect gas (B) with y5 = 12 at a state defined by pg = 0-1, p5 = 0-125. The
test is a two-component version of the classical Sod problem analysed in Section 5.1. The
computations have been done using a Eulerian 100 x 1 quadrangle grid (as in Figure 4(a), top).

The solution pattern is very similar to the one corresponding to the Sod problem, although the three
intermediate states separated by the characteristic waves are different (owing to the different values
of 7 for the two gases). The mass of gas A advances with the contact discontinuity, compressing gas
B, where the typical shock wave develops.

Figure 7 summarizes the results obtained with the first- and second-order schemes and either the
Eulerian or the Lagrangian formulations for several fields (pressure, temperature, total density, mass
fraction of component A and velocity) at # = 0-16. As pointed out by Larrouturou,'? the modification
of the Roe solver to perform the upwinding of the partial density fluxes is mandatory to preserve the
positivity of the scheme. These results agree also with those presented by Ruel.?

5.3. Shock diffraction by a deformable ring

This test aims at simulating the effect of a blast wave on a ring placed in the middle of a wind
tunnel. The test has been taken from Reference 22, where it was analysed by assuming fixed wall
boundaries (rigid ring) and using a purely Eulerian formulation. Some changes in the problem data
have been made in order to formulate the problem according to the real values of the physical
(dimensional) quantities.

The computational domain is sketched in Figure 8. The fluid domain ABCD is initially at rest, with
p =0-1MPa and T=300K. The fluid is assumed to be a perfect gas (specific heat ratio y = 1-4,
molecular weight w = 2896, ¢, =20,780Jkmol 'K~ '). The universal constant of gases is
R=8312Jkmol 'K ~'. A shock wave enters the channel at time 7 = 0 through the lower open
boundary AB. The shock is characterized by the upwind state p., = 0-4MPa, T, = 480K,
u., =(0,311-28) ms ', satisfying the Rankine—Hugoniot conditions. The shock Mach number is
Ma,, = 0-896.

The shock interacts with the cylindrical shell structure depicted in Figure 8. The shell material is a
steel which is assumed to behave as an elastoplastic material characterized by the following
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Figure 7. Two-component shock tube: Eulerian and Lagrangian solutions

constitutive properties: density 7800kgm >, Young modulus 1.6 x 10'' Pa, Poisson ratio 0-333,
elastic limit 1-05 x 10® Pa, plastic slope 1-6 x 10'Pa. The shell thickness is 0-12 cm.

The boundary conditions for sides AD and BC are those corresponding to a solid wall, whereas the
far-field condition on the open boundary DC corresponds to the initial gas state. The structure is
blocked at point E opposite the shock incidence point. The analysed transient covers up to =3 ms.

The pressure field at three selected times is displayed in Plate 1(a). Plate 1(b) shows the
temperature field, Plate 1(c) the density field and Plate 1(d) the velocity fields. The calculation is
merely demonstrative of the mechanical response of the steel shell to the impact of the blast wave,
since no other results are available for comparison.

Concerning the solution obtained in the fluid domain, the computed fields qualitatively agree fairly
well with the numerical results presented by Godunov et al.” (using a first-order-accurate, exact
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Figure 8. Shock diffraction by a deformable ring: problem definition

Riemann solver numerical scheme) and Ruel®” (using a second-order-accurate Hénel-van Leer
scheme). A reflected shock appears and two symmetric supersonic zones develop behind the shell.

5.4. Supersonic flow over a deformable step

This problem has also become a classical test to assess numerical schemes for compressible
flows.”*>* The supersonic flow over a step was analysed in the mentioned references by assuming
rigid walls and by using a purely Eulerian formulation. In this test the step created in the channel at
time =0 will be assumed to be made up of a material flexible enough to undergo a relatively large
deformation.

The test definition is sketched in Figure 9. The channel length is 3 m and its height is 1 m. A perfect
gas is flowing at Mach 3 speed. The gas is assumed to have y =14, w=28-96 and
¢, =20,780Jkmol ~ 'K~ '. The universal constant of gases is R==8312Jkmol 'K ~'. The Mach 3
flow is characterized by p, = 0-3 MPa, u=(1202.73, O)msf1 and T=400K.

At time =0 an obstacle 0-2 m high appears at a distance 0-6 m from the tunnel inlet. This obstacle
is assumed to be made of steel, behaving as an elastoplastic material whose properties are the same as
in the previous example (Section 5.3). The steel shell is assumed to be 2cm thick and has been
modelled using the same two-noded shell elements that have been employed in the preceding
examples.

-

Elastoplastic Gas

Mach 3.0 Structure
Flow

Figure 9. Supersonic flow over a deformable step: problem definition
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The produced shock hits the steel structure, distorting its initial shape according to the mechanical
boundary conditions applied. For the computation presented here, it has been assumed that the point
B has its three degrees of freedom (x-displacement, y-displacement and rotation) blocked, whereas
the point A has its y-displacement blocked. The transient analysed covers up to 3-5 ms.

The transient on the pressure field is illustrated in Plate 2(a). The numerical solution obtained for
the steel shell deformation has not been compared with any other results. The computed pressure field
within the fluid sufficiently far from the deformable step agrees very well with the results published in
the above-mentioned references for the rigid step case. Note that the angle of the second shock
reflection (which takes place on the shell surface) is markedly smaller than what is observed in the
rigid step case. This is due to the convex-shaped deformation undergone by the horizontal part of the
structure close to the step wedge during the transient.

The transient results for the temperature are shown in Plate 2(b). Plate 2(c) shows the density field
at the three selected time points and Plate 2(d) shows the velocity fields.

5.5. Explosion in a vessel

This last test is merely demonstrative and aims at showing the capabilities of the model in handling
applications similar to those encountered in safety engineering. In the fluid—structure problems
presented in the above subsections, the flow as external to the structure. This case deals with an
internal flow case: an explosion inside a container produces a significant deformation in the tank
walls. The scope from the engineering standpoint would be to investigate the critical conditions that
make the vessel shell collapse.

The geometrical characteristics of the problem are sketched in Figure 10. The upper part of the flat
tank is initially filled with air, whereas the bottom part contains a heavier gas (argon), both of them at
an initial pressure p,;. = p, = 0-1 MPa. A bubble of hydrogen at high pressure py; = 2-5 MPa is also
assumed to be present at the initial time. The initial temperature 7,;, = T, = Ty = 300K is uniform
inside the container. The universal constant of gases is R=8312Jkmol 'K ™' The other gas
properties are summarized in Table 1.

The vessel is made of steel, which is assumed to behave as an elastoplastic material characterized
by the same properties used in the example of Section 5.3. The assumed shell thickness is 1-5 mm and
the shell structure is blocked at points A and B (see Figure 10).

A B
High ' L
pressure ; .
hydrogen —
bubble

Air——

Argon

Plane Strain Analysis

Figure 10. Explosion in a vessel: problem definition
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Table I
Property Hydrogen Air Argon
Specific heat ratio 7y 1-4 1-4 1-269
Molecular weight w (kg kmol ") 2 28-96 40
Specific heat ¢, (Jkmol 'K ™) 20780 20780 30900

The transient will be analysed up to =2 ms. The computational results are illustrated by plotting
some selected scalar fields at times #=0-5, 1, 1-5 and 2 ms. The deformation undergone by the vessel
is large enough to be noticed without a deformation amplification factor (especially at the final time).

The pressure transient is outlined in Plate 3(a). The estimated overpressure reached in the
neighbourhood of point B is about 3.2 MPa at time #= 1-5 ms. The evolution of the temperature field
is shown in Plate 3(b), while Plate 3(c) shows the evolution of the air mass fraction. The dynamics of
the explosion is illustrated in Plate 3(d), where a plot of the velocity field at the selected times has
been made. The expanding shock first reaches the vertical, right-hand part of the vessel and only
somewhat later the upper side. The reflected shocks interact with the expanding blast wave,
producing a complex flow pattern.

6. CONCLUSIONS

A new model for the treatment of multicomponent compressible flows has been implemented in
PLEXIS-3C. It is based on a node-centred finite volume approach which uses the underlying finite
element mesh (made up of either triangles or quadrangles) to construct the conservation cells. The
computation of the numerical flux among these cells is made by means of an approximate Riemann
solver technique. The grid motion, necessary to accommodate the Lagrangian (or material)
formulation for the structures with the typical Eulerian (or spatial) formulation in the fluid, has been
handled by means of an arbitrary Lagrangian—Eulerian technique. The combination of these new
models with the existing fluid—structure interaction algorithm takes carefully into account the
characteristics of the time-integration schemes used for the solid and fluid domains respectively and
ensures a strong coupling at the fluid—structure interface.

A set of benchmark exercises has been produced to assess the performance of the method for both
purely Eulerian and ALE computations.
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